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The vertical structure of atmospheric oscillations
formulated by classical tidal theory

G. V. Groves
Department of Physics and Astronomy,
University College London,
England

Abstract

From the equations of classical tidal theory with
Newtonian cooling (Chapman & Lindzen, 1970), formulae are
obtained for wind, temperature and pressure oscillations
generated by thermal, gravitational and lower-boundary
excitations of given frequency. The analysis is an
extension of that of Butler & Small (1963) who formulated
solutions of the vertical structure equation in terms of
two independent solutions of the homogeneous equation and
derived expressions for surface pressure oscillations.
A comprehensive formulation is presented for wind,

temperature and pressure oscillations as a function of

height with the above-mentioned sources of excitation and
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an upper-boundary radiation condition. The formulae
obtained are applied at the surface leading to evaluations
of the surface oscillation weighting function wp(z) which
weights the thermal excitation at height z according to its
differential contribution to the surface oscillation.

The formulae are shown to simplify at heights above a
region of excitation and evaluations are undertaken of the
thermal response weighting function wt(z) which weights
the thermal excitation at height z according to its
differential contribution to the oscillation at any height
above the region of thermal excitation. Computational
procedures are described for obtaining two independent
solutions of the homogeneous equation and results are
presented for an adopted profile of atmospheric scale
height. The problem of deriving the surface pressure
oscillation due to a tidal potential is briefly reviewed
and results are presented as an examcle of the application

of formulae that have been derived.
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1. Introductiion

Since the time of Laplace periodic oscillations of the
atmosphere as a whole have provided a subject of constant
dynamical research. Tidal components, on account of their
known periodicities, have formed a major part of this study;
and reviews of investigations before 1950 have been presented
by Wilkes (1949) and Chapman (19Y51). Interest up to that
time centred chiefly around the periods of free atmospheric
oscillation and the so-cailea resonance theory, which

attempted unsuccessfully to account for the relatively large
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magnitude of the solar semi-diurnal barometric oscillation
in terms of a free period of very close to 12 solar hours.
Subsequently, the thermal excitation of tides has received
increased attention and was included in the review of
Chapman & Lindzen (1970) from which the equations of
classical tidal theory have been taken for the developments
of this paper. In this Introduction some of the main
features and developments of classical tidal theory are
summarized.

The theory of oscillations in a compressible atmosphere
was initially developed as an extention of that of Laplace
and others (Hough, 1893) for a liquid ocean of uniform depth.
whereas for an ocean the velocity and pressure variations
were independent of deptn, the atmospheric problem introduced
a dependence on height z which under simpliilying assumptions

could be expressed in terms of the independent variable

x = = Japo/fio, = J 4S5/ H(s) (41)
(-]
where Py is unperturbed pressure, Poo is surface pressure

and H is atmospheric scale height. The fundamental

equation was

5[
4+ |-+
dx* b

Y- i dHl _ -2
sy = o )

7
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where Y is the ratio of speciiic heats of air and 30‘ is

velocity divergence.

The quantity h in (1.2) is a constant of separation
between vertically- and horizontally~dependent terms in the
equations of motion and appears also in the equation for the
latitudinal variation of the pressure perturbation at a given
height. This variation is identical with that of the
perturbed depth of an ocean of otherwise uniform depth h
(Laplace's tidal equation), and it is customary to refer to h
as an equivalent depth of the atmosphere. The choice of h
in (1.2) is limited to values h;’s which are the eigenvalues
of Laplace's tidal equation for a given angular frequency of
oscillation @ and zonal wave number s.

Use of the alternative forms of wave representation
ei(‘f’*&t) and of(mf-‘t) s Where 4> is longitude and t is
time, has previously been discuSsed (Groves, 1979): the form
that appears more frequently in the literature is efb6+4drt) ’
& being positive and s = 0, #1, +2, « . 80 that waves travel
westward if s > O and eastward if s< O, and |s| is the number
of wavelengths that fit a circle of latitude., The form
e;p°4r*8i) will be used in the present paper (Equ. 2.21).
The suffix n is introduced as an identifying integer that is
assigned according to an adopted scheme of notation; then &,

s and n specify a mode of oscillation. In the present paper

& is taken as fixed and only s and n appear as suffices,




€l hi. In order tc reduce thie number of suffices attaching

tc various symbols the convention is followed from the end of

82 onwards of denoting quanti.ties dependent on s,n or summations of
such quantities by capital letters with the suffices s and

n omitted, e.g. Q@ stands for Qi: capital letters will be used
exclusively for mode-dependent quantities and small letters

will be used exclusively for mode-independent quantities.

One exception to this rule willi be the continued use of h for

S

by

and of H for atmospheric :icale height.

The extension of tidal theory to tnermzl excitation *i
requires the introduction of a forcing term on the right-hand
side of (1.2). Siebert (190l1) presented the relevant equations
and investigated heating by water vapour absorption of solar
radiation. If Ji(x) denotes the modal rate of heating per

unit mass of atmosphere, (l.2) becomes

-~

e R L oy
J-J-Q A ﬁ: Y edX ) n n ‘
where — ;
qu = ):., Jn(x3€ (,l-‘\t-)

to¥r gkT

and is a constant acceleraiicn due to gravity.
g

For realistic profilies of scale height =, it is necessary

to solve (1.2) or (l.%) numerically. sefore 1950, solutions

of (1.2) were obtained by hand computation and differential




analysers for a variety of scale height profiles in order to

derive atmospheric response curves (Wilkes, 1949; Jacchia &

Kopal, 1952). Integrations were carried out from an upper

boundary height between 125 and 150 km down to the surface to

provide a (complex) solution y satisfying the upper boundary

radiation condition. y was then multiplied by a complex constant

determined by the amplitude and phase of the gravitational

tidal potential through the lower boundary condition which

required a vanishing vertical velocity component at the surface.
Numerical solutions of (1.3) were obtained with the aid

of an electronic computer by Butler & Small (1963) in an analysis

which showed heating by ozone absorption to be the dominant

ger.erator of the solar semi-diurnal barometric oscillation.

Butler & Small followed the procedure of Jacchia &« Kopal (1352)

and obtained two real solutions y;, y, of (1.2) such

that yl4-iy2 was the required linear combination satisfying

the upper boundary condition. The solution of (1.3) was

obtained by the method of variation of parameters in the form

:1:= (¢+LP)(3‘+L}1) +I': (Is)
where
X & x 4 7
I‘:(x) = (%) [ 42 Gn } d§ = Y [ ¥.5. J ds (Le)
! L 1IN A L ¥ Ya— d Yals

and dashes denote differentiation. a+¢f was determined as
previously to give a vanishing vertical component of velocity

at the surface (with the tidal potential now disresarded).




The availability of hign-speed computers has been a rajor
factor in reducing to manageavle proportions the task of
investigating thermal atmospneric tides for different choices
of H and Ji. Accordingly, lindzen (1908) integrated (1l.3)
as it stands by a method that numerically applied the required
upper and lower boundary conditions: the corresponding tidal wind

and temperature fields as weil as surface pressure were also

computed.

The present paper is concerned with developing the
analytical approach which has previously led to (1.5) and to
the following equation for the surface pressure oscillation

(Butler & Small, 1963)

,\4 - - !p'_o_a (yl*"ffz)(dl-:/d") - Ifx (‘L/"fh‘)('j,*":fz\
"~ - (H/$2 + d/dx = 2 Yy+¥,)

07)
x =0

On examining the terms in (i.7) it is seen by (l.4), (1.6)

that the heating rate Ji(x) contributes differentially to the

surface pressure through the integral 1. Weighting functions |

= J7]

Wp(z) may therefore be derined for a given mode which weight
Ji(x(z)) in proportion to its differential contribution to the
surface pressure oscillation (Groves, 197%5). In a similar
way thermal response weightiiug functions at(z) have bveen
introduced (Groves, 1975, 1976, 1977) wiich, for a given mode, :

weight Ji(x(z)) in proportional to its differential contribution

to tidal fields of wind, temperature or pressure at Ireater




heights. The derivation of wp and w_ has not previously

T

been given and is included in B8 10 and 11.

The simplifying assumptions under which (1.3) has been

derived are detailed by Chapmarn & Lindzen (197C): the more

significant approximaticns are considered toc be the neglect

of (i) the Earth's topography., (ii)

dissipation processes,

(1ii) non-linear effects and (iv) winds and temperature

gradients in the unperturbed atmosphere. The aralysis developed

within this framework of assumrtions has been termed classical

tidal theory (Lindzen, 1963). The
over more general treatments is the
simplification that arises fronr the
horizontal dependences with respect

Tidal motion in general may then be

main advantage of the theory
considerable mathematical
separation orf vertical and
to each mode orf oscillation.

represented by a summation

of such modes which propagate independently of eacr other.

One notable extension of classical theory which preserves

separability has been the inclusion of Newtonian cooling, i.e.

a rate of energy loss that is proportional to the temperature

perturbation (Lindzen & licdenzie, 19©7; Lindzen, 196u).

This form of dissipaticn will be included in tne present

analysis.
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e Expressions for horizontally~dependent terms

Before proceeding to the treatment of vertical structure,
series expansions of horizontally-dependent terms employed in
classical tidal theory will be developed. The series coefficients
introduced become the vertical functions involved in the later
analysis.

Let Qo be an atmospheric parameter which varies periodically
with constant angular frequency o (>0) and let

po= cos B (2.1

where B is colatitude. We omit the height dependence and write

Q(p, . 1) = J)Q[chwk) cos ol + Q] (b, #) Af/nfs't] (2-2)

where ¢ is longitude, t is time and IQ is a constant
having the same physical dimensions as Qo. wWe define

Q = Q +iQ @23)
then

0, = Ly R QT @-4)
Notation: Superscripts R and I are used to denote the real and
imaginary parts of a complex number and an asterisk its complex
conjugate.

Q

expanded as a Fourier series

. is periodic in ¢ in the interval (0,21 ) and may be

Q. = i(Qg ws s + Qs Sin b¢) @2.5)

5=0

where Qg, Qg are complex. It is convenient to replace Qg, Qg

'

e
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by Qis defined by
Q€ = Q (4=0)
2Q° = Q + i@ (4> 0) (2.6)
2Q° = QZ—;Q; 6> 0)

Then (2.5) becomes

Q. = a Q% et (z.7)

and (2.4) becomes ':
> - X L(‘é¢+gt\ i
Q=R Q" (2-8)
A= ~00 .
Terms in (2.8) having s positive (negative ) represent a westward
(eastward) progression of phase. In the special case when

R® =0 (s # So), (2.8) becomes

e B AU . it o

Qo = /QQ ( QA‘R Coso’t!'f' Qé" ,a},«c’t‘) (2.9)

where

53
_a

/

t = s ¢/0 +1 (2.10)
t' is then local mean solar time if cr‘/so is equal to the solar

rate of rotation of the Earth and t is Greenwich mean solar time.

Q

is expanded either in terms of Hough functions ()i or of

S is a function of latitude and in classical tidal theory

= e [T

— i —bean =

s mY:]
Qn that are related to C)n:

-




-13% -
Q% - £ QLO (R=WT,P2J) (M
=Z Q19,0 w Q=9,V) @2.12)

where, for Q@ = U,V,W,T or P, the quantity QO is the perturbation
of the eastward, northward, vertically upward components of
wind velocity, temperature or pressure respectively. For
a=N,J, Q, refers to the forcing function Jlo, which is the
potential of an applied force per unit mass of atmosphere

(= -Vﬂ_o), and to J_, which is the rate of diabatic heating
per unit mass ot atmosphere. The summation in (2.11) is

taken over all members of the set of ()i satisfying Laplace's

tidal equation

df1- H- J@d L g2+ P a Lo oo@ 0 2.13)
drl { !" J’f‘ f‘t ';a. g g?__ 2 |L1
for -1< M <1, where
f. = &6/2 W, (ﬂ.lh)

and tﬂo is the BHarth's sidereal rate of rotation, a, its
radius and 8o the surface acceleration due to gravity. ()i
is the normalized eigenfunction of (<.13) corresponding to the
eigenvalue hi. Methods for calculating hi and C)Z have
previously been reviewed (Groves, 1979).

Horizontal wind oscillations depend on horizontal gradients

P

s

il
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of _Q°'+P°/ Po where fb is unperturbed air density, and their

latitudinal dependence takes the form of (2.12) where

- _ (l-\nz‘\i pr.) K i] @4 LQ.IS\

Un ™ %y [“I“ £ 4l "

- O-[*’)Ji (o[ Pp _ _J;] u (2.16)
@Vn - ‘{1- a [ l"!‘Ll A.I‘L @n_

A method for obtaining C)Qi (Q = U,V) by series expansions
which avoid the indeterminacy of (2.15), (2.16) when W = f
has previously been given (Groves, 1979).

Hough functions belonging to the same set are orthogonal

and when normalized

.f;" @: @: dp = f) En #-ﬂ:z 27)

By (2.4), (2.7) and (2.17), the coefficients in (2.11) may

then be obtained from Qo as

t A (2% f)
Q.- ms;ﬁ j X J Q, (g t) @é()*)e( e dt d¢ dp 2.18)
n Q -1 Jo Jo o "

for @ = W,T,P, 5L and J. An alternative expression that

follows from (2.18) on replacing ot by st-g is

i an/o 4 cadeot)
LQ I S j Q:(r\‘?»t) @h(}‘) e + d_td?d# (2.\q)

iﬁng

where by (2.1)

e Ao v s
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Q) (b, £) = Q, (.9, 1-T20)= £y (Q insT- QL eonst)  (2:20)

The height dependence of QW is expressed by <

s
n
Notation: Capital letters wilil be used solely and exclusively
for quantities dependent on s and n, the suffices s and n being
omitted, and for summations of such quantities. Capital

letters having suifices r,J (=1,2), €.g. A C_., b E

rj' “rj oj' "r°

i Yaj’ Yﬁj and ;'oj’ are alsc dependent on s

and n. Exceptions are made with hi, scale height H and the gas

Ir’ Kr’ Pr’ Yo

constant for air RM.

By (2.4), (2.7), (2.11) and (2.12), the expansion of <, is
) \ ~st)
— ".‘\ L(d?’ S
Q, = dq Kl %1 Q Wy e (2.21)
where (Q) denotes @ for Q = U,V or is otherwise omitted.

The factors .ZQ are chosen as follows

L 0ogdl 2§ R Lo = pe.| 24

= = A g = A,y
Ly= Ay = 8 b (2.22)
QJ'L = Oogo/ 2 ,23- = uogo g,
‘QL= aofjowob)/ RM QE- = i— »Qppw

‘lL and iE will be introduced in BB 3 and 4 respectively.
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3 Vertical structure relations

The equations or classical tidal theory are taken from

Chapman & .indzen (1Y970), where the height dependent functions

Upy Vo Wy ST, Spn, .ﬂn, J,, are related to the quantities

U, V, W, I', P, S, J introduced in 8 2 by (2.21) as follows

wa= U e =gV = AGW

1%

ST“: 9,, T’ SPn = YPP LS.‘)

No= L4 J.= 4;d7

A dependent variable Y is introduced here to replace that

denoted by y in (l.2), by yi ir. (1.3) and by Yn in Chapman
& Lindzen (1970). we write

Yo = (o w/YR)Y T (3-2)
In place of U, V, W, T, I we begin by working in terms of
v .
vy = -iU
v
Yy =V
YW= W-ifd (3.3)
VT = L(I+LquT + kJ -\

P

Y7 o= f(e*Ha) P+ 1]

where

i
vl
|
1
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K = (¥Y=-1)/Y 3.5)

&p in (3.3) is a dimensionless quantity related to the rate
coefficient of liewtonian coocling denoted by a in Chapman &
Lindzen (1970). We have

a— = a/«sV (3.6)
Then Lo’ the rate of decrease of the temperature perturbation

To, is given by

r - /
where IL is defined by (2.22). For a single mode (2.18)
and (%.7) give

L = a T (3.9)

Classical tidal theory relates 1% to Y by

ve - e“.FQ\V} Q=UVWTT) ©a)

where

<N
il
",
<\j\'
#
w2
I
Ni-

4
T dx

= LR) - Py (310)

Fp = GaNHAE) T,

Pt g e
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From (3.9) and (3.10)
Sy = -y o) 3
yo= YV = yal (3.12) ’
yT= R AFTES YR A (3.13) |

Y satisfies the vertical structure equation (Chapman &

il i,

Lindzen, 1970) which may be written as

-

09(\/) = fjk{u\]—/(l+ta1_)+2¢)uﬂ,] (3.11)

et

where 4
J = d¥da* - 2y ddx + R (3.15) !
2¢ = @ ha_/(i+ia;) (3.16) ;‘
Ro= F-4+v (3.7) ‘,

F o= (H/f)=N\Y(i+:a.) (31%)

g o < -
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4, Vertical energy flux

The rate of flow of wave energy in a vertical direction
in a column of constant cross-section receives prominent

attention in tidal theory in connection with the formulation of

an upper boundary condition. As the time average of first-order

flux terms is zero, products of first-order terms need to be

retained. Following Wilkes (1949) the time-averaged vertically

upward energy flux at a given height in the notation of the

present paper is

Em = Ewott\ UM)

where bracketed suffices denote averaged quantities. Hence

by (2.4)

——— »

E“) = é‘ ﬁ?){)w ?l (_?c \»L) U"'z)
To obtain the global average of this quantity we first average

over all longitudes to obtain by (2.7)

E, =4 indy S RI(P W) (43)
(t,#) W e
and then average with respect to p from ~1 to +1 to obtain

by (2.11) and (2.17)

E(t,‘f.l‘) = QE %—. % E (A--u)

<4z - o0
where

E = RI(P'W) )

and ‘£E is defined by (2.22). By (3.3) and (5%5.9) it follows

from (4.5) that

oy

- e e q? ———

e e e -
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£ = Cal ) In[F () P[5, 0+ 0]

= (ao/R) Ton [ ¥ (dYVdx - 2 0757 %-6)

by (3.10). For x > X, such that e K 1, the term

in Jf1* may be neglected and (4.6) reduces to

E = (a,/R)Tw (Y dY7dx) (h7)
The accuracy of this approximation is better than 1 per cent if
e X o 0.01, i.e. if height exceeds about 70 km. For a
thermal source of excitation, (4.7) is exact.

If in piace of (4.1) we take

E(ﬂ = L‘Po*' fuﬂo)(wo+JiJ'3:}(t\ (“.%)

it can be shown by (1.1), (2.4), (2.7), (2.11), (2.17)
ané (2.22) that after a short reduction

E o= RUP+ (agHe))RTW-0)  (a9)

on putting H = pogo/ Po Hence by (%.3), (3.9) and (3.10)

it follows that (4.7) holds without approximation. (4.8) takes
account of the flux of potential energy fbjzowo by replacing
Po by Po'+ foJIo’ where fols unperturbed air density, and

the energy flux .8 evaluated with respect to an equipotential

surface for which the vertical velocity is -JQo/go by replacing

W, by wo"no/so’ & is then zero for the equilibrium tide.




Se general solutions for heipht-deprendent functions

Let Yo = Y be anv two independent solutions of

Yol’
the homoyeneous equation

;2;(‘1¢) = 0 (SA\

and let Y = Y' ve a particular integral of (3.14), then the

o’

general solution ot (3.,14) is

— /
Y=Z, A7, +Y (5.2)
where E?o = E:ol’ E:Oj are arbitrary censtants and N is defined by
notation: o/\{} = Q, 62— a, ﬁ'

i3y definition the Wronskian of YO is

dY
Wo () = \I A {—L QS-B)
¢ o &

and it follows from (3%.14) and the Avel-Liouville formula that

W lR) = W 1) €1[~ [,Zj \.l—'(v)o'u:{ (S-u\

Xy

Yo(xo), dYo(xo)/dx may be chosen arbitrarily as initial conditions
for the integration ot (5.1), and nence by (%.%) we may arrange
for wo(xo) to be unity. Tris condition will be introduced

later (Equ. 12.5) when initial conditions for the numerical
integration of (5.1) are considered. For tne present we note
that since 3# is mode independent, wo(x) is also mode

independent by (5.4).

By the method of variation of parameters a particular

™

'

s

4

e
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integral of (3.14) may be obtained as

Vi (%, X) "f [\/ () A /(x)J Stu) du (55)

where

Sw) = ,Ajm)fcu) + Zglmﬂm

Sl = Ko u/[lwwa ()] 2 (5:6)

1
_iu

Dplw) = 2y e 15 (n)

and x, is arbitrary. Cn substituting for Y' from (5.5)

into (5.2) we obtain

Yix) = DA T, (2 (57)

and hence that

dY( _ Dy p Dl (5.8
dx dx

where
Do) = =~ojt>a) *LAXJ‘WQM H (=:9)

The suffix j (= 1,2) will be used exclusively for the two
independernt solutions of (5.1).

On substituting for Y in {3.9) from (5.7) and noting
from (3.10) that the operator f;Q is linear in d/dx, we obtain
by (5.8)




Y9 = Deoa 1m0

(5.10)
where by definition
Yo?(u) = eil./% (YUJ‘\ (5:0)
From (3.10) and (5.11)
XV = WH)OL )
R AR (42)

T P W
yo = KZJ+(‘K+>‘)70J'

i

By (5.9) we may write (5.7) as

X
NGO + 5 [\/Otx)/\ \/O(u)]Smdu = E:(JA)A \/ou) (SJS)
XA
and (5.10) as

Xg . . 0
VQ(XB) + j [\/00 LIB)A\/O(M)}\>(U)G'LA = LL)()A)A\{) (13) éﬁ.lh)
A
on putting x = Xge In (5.13), (5.14) x, and Xp are arbitrary
values.
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O WKBJ solutions for Y and b

WKBJ solutions of (5.1) are examined in this section in
preparation for the formulation of the upper boundary condition

in 8 7. By a change of variable from YOJ to

Y“J (x) = Yo,' (x) exp [—j:x}/(u\ du:j (é,t)

where § is arbitrary, (5.1) reduces by (3.15) to

& CfmJ\/ () = 0 .2
dx’ “

where L 8
Q=F + ¥ - (y-3 ) 6. 3)

dx

If G were constant, the solutions of (6.2) would be sinusoidal
or exponential. In gerneral G varies with height, but if the

variation is sufficiently slow, solutions of approximately .
sinusoidal or exponential form may rce obtained.

WKBJ solutions may be forwulated ror a range of values

of x for which . d

Gl <« | (6.4)

 (608) = £(GIQ)T/
3 (Gxef €)= 7 (G &)
where suffix x denotes differentiatior with respect to x.

Solutions of (6.2) are then approximated vy

-l * 4
[C(xﬂ » expi 1i5~[§(ui]k du}. Two independent WKBJ solutions
A}

i
of (5.1) which satisfy initisi conditions ’
1




\IOth) = aj « )
.S
ODOJ(E) — a’-
- J
d x

are given by
[at)- K Y, 00 = [ea] + K, ) ajleap| 11,5,

- [an’- + K,{g)adur[flzti,l)] (6.6)

on using (6.1), where

I (5x) = r K. W) dw (6.7)

g
Ky=T-:cTy Kp= -0 =+l (6.5)
r: = qi (‘g< arﬁr-’\( E—) r;= Y—Q,/AQ (6.9)

The suffix r ( = 1,2) will be used exclusively for terms
associated with the two WKBJ exponential forms.

We define

dx

A‘_J.(JO = [L ﬁo\ibb)*_ K ,(l)\/,u)}/ [ K, =) - K‘_(X)} (6.10)
r o) r

r's 3¢ (o)

and Yoj’ dYoj/dx are derived from (v.6). Then (6.6) may be

written by (6.5) as

[ D S
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\/0,) () = A'J ‘g)eup[il,[g)u)] + A’J W)e,‘x,)[t'. IJLS)u)J (6.12)
Putting 3 = x in (6.12) we obtain
P‘rj \x) + Arf,’ [.1) = \/OJ. (<) (6.13)
From (6.10) and (6.12) with x = §', it follows that
P"'j Ly) = A,,J L‘s') exp [i I'_(E’)S')] (6.14)

and from (6.14) that

ALY AL (615)
ALy A.(9)

We define
CdY
e = Aoy _ T VY, )
ri TN T
Arg(") { ‘E[__!°"‘(2\+ K,(x‘;y L&)
X - o2 Léﬁlﬁ)
Cra = |

then by (6.15) C.; is independent of x.

From (5.7) and (6.12), we obtain
Yh§='RﬁgkﬂJELﬁgﬂ+Tﬂgﬂ&TPIﬂgﬂ] @mﬂ
dY &9 =LK,(x\P‘lS)x)eap[il,lg,x)]*‘-IK:(x)Y’z(;;\eJ/’[:]2(33)] c.18)
dx

where

T (§,2) = D) R_(5) (6-19)
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Putting £ = x in (6.17) we obtain

?r (¢, x) + K’ L‘x,x) = Ygx) @‘20)

It follows from (6.14) and (6.19) that

P (s) = P(s,x)exp [c Ir(S,S')] 6.21)

and hence from (6.17) that Y(x) is independent of § .
On substituting (6.17), (6.18) into (4.7), we obtain by

(6.21) with 3' = x

E E . r E, +E (6-22)

where
2
E,60= - (e R)K e [P 45,0 exp [-2TT52)]  @29)

-~ @A K Y [P, ) (6.24)

E'G0) = = IR0 + K, ?\'ca,ﬂ‘r;u,u)} (6-25)

V. . . R
Er is an upward or downward flux according to whether -Kr/h
is positive or negative. E' arises from an interaction

petween the two waveforms whose sum is Y in (6.17).
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7 Formulation of the upper boundary condition

Let X, be the upper limit to the range ot x for which a
solution for Y is sought. To obtain a boundary condition at
X = Xy consideration needs to be given to the properties of
the atmosphere at x > X1 Following previous accounts (Wilkes,
1949; Butler & Small, 1963%; Lindzen, 1963) we assume that
(1) the energy flux remains bounded as x—» < and (2) the
radiation condition holds, which means that there is no
incoming energy at large values of x. The radiation condition
is usually applied on thne assumption that H aud ap are constant,
but the following assumption is less restrictive. Ve assume
that a value of x ( >'XS) can be found such that:

(i) $=0 (x> xg) (7.1

(ii) WKBJ solutions are valid for x > Xq,

(iii) For x > Xy, either

@ > 0F (7-2)
or () | > | (7-3)
By (5.6), (i) requires that fcr x > Xy
spJ = 0 (7.4
A%IAJI = 0 (7.5)
as the two sources of excitation are independent. (7.4) is

readily satisfied by taking Xy at a height above the region

of heating whose effect is being investigated. For example




the combined effects of trorospheric, stratospheric and

mesospheric heating could be investigated oy taking x, at

S
90 km altitude; or the contribution of tropospheric heating alone
could be investigated by taking Xg at say 15 km altitude.

(7.5) requires, by (5.4) and (5.6), that either ¢ = O or

S =£= O to an acceptable order of accuracy for x > Xg .

Applying (i) to (5.9) gives

D) = DOJ.(xS) (X> %Xg)  (7.6)

Then (6.19) with § = x;, and (7.6) give

PoGx o) = T o0, X%s) (X2 X)) (7.7)

Hence under (i) and (ii), (6.17) holds and becomes by (7.7)

on putting §= x

Y = ?l('xL,xs)eur[LI‘(xL‘l)J + ”‘;V“L."‘S>e"]’ [L I,(‘x,_'m)]

(x> 2x) (78)
From (6.8) we have

R R I T R
KoR; r: ; ':II Kt: r: —Ir;, (1.9)
K="+ 1o Ky=-I7-F
Hence under (iii) (a)
KIKy < O (x> x.) (7.10)

and we choose ro ( =1o0r 2} s._h that Ki < O and Ki. > 0

o o
where ré is given by (6.11). By (6.7), (6.23) and (7.7) Er is
o

. ————a — e e —
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unbounded as x -+ =@ unless

‘F% LxL»XS) = Q L7'”)

(7.11) provides an upper boundary condition for the solution

of Y .n the region x_g x < Xy o

o\
Under condition (iii) (b), we have
Kk, > © (x> x,)  (7.2)

as (iii) (a) does not now hold; and by (7.9) that

(k*/ &) KS/8) < O (x> %) (7.3)

I
1

>0

The requirement for a bounded energy flux excludes toth K

T
and Kg from being negative and (7.12) therefore yields Ky
and Kg > 0. By (7.1%) the terms in (7.%) are then associ-
ated with either upward or downward finite energy fluxes,

which by (6.23%) with § = X and (7.7) are

I
E_=-(a/%) KR () | P,Lu‘_‘xs)]ze»xp[—ZIr (. %) (7-14)

We choose r ( = 1 or 2) such that K? /h > 0O and Ki./h < 0,
0 0
then by (7.14) Er is a downward flux and Er' an upward flux.
o o
Under the assumption of the radiation condition, we require

Er = 0 for large x. Hence by (7.14) Pr (xL,xS) = O and the
0 o)

upper boundary condition is again given by (7.11).

By (5.9) and (6.19), we can write (7.1l) as

X —
.5;; [Ar,(xa.)/\ \/o(u‘] Seydu = o)A Ar ()(L) (7 6)
A ©

On dividing by A 2(x )y, (7.15) becomes by (¢.1l¢)
T, L

ot Al . et e e M maen =




x
-S -

S [C., A YOM} Stwydu = Z,p)A C, (T.16)

J'A [+ o
An upper boundary condition is provided by (7.16) with the
appropriate choice of Ty i.e. ry= 1l or 2, such that either
Ki (x) < O (under (iii) (a)) or Ki (x)/h > O (under (iii) (b))

o] o]

for x }ny.

At this stage we are atle to identify (1.5) with the eseneral
solution (5.13) subject to the condition (7.16). By (5.9)

1!- -
D, 1% = Eoi""‘“i,, Vi) Stadu = Z,(x) (7.47)

Hence, since S(u) = O for x 3» Xg, (7.16) becomes

Z,00yaC = O (7.18)
and, on replacing x, by Xj, (5.13) becomes

x

. S
YOO = Z () \/ou)—rg [‘/ch‘,'/\ Yo (u)] Sty dw 7.19)

Then, since Cr > =1, (7.12 3 and (7.19) give
)

o

- Xq
N = 301[(_’,“42(1\—‘10‘@4 * j i [\/o(xs,\\/ol\,)]\slux du (7.20)

By (3.2) we may identify the complex conjugate of (7.20) with

(1.9) by writing

a_ = =0 E‘o* = —(a+rcR)
=Y a & .21}
\/:q = (f-ﬂ/qowc) Y Yo: = (YK/ S PY
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SY= (awolTR) CL[ (4 -y, ¥ (7-22)
e = = (7-23)

(7.22) is in accord with (1.4), (2.22), (3.1), (3.2) and
(5.3), but (6.,16) imposes a condition on yl(x), y2(x) for

x » Xy, which by (7.23) becomes

i(:ﬁ,*f:f,) = -¢ K’f(y.+iyz) (7-24)
dx o

Hence
gLy, < eap [_;I;,] (x 2%) (7.25)

For an atmospheric 'top' (i.e. X )»xm) having constant scale
height H and no dissipation, i.e. ap = Y/ = 0, we have by
(3.4), (3.18) and (6.3) that G is the real constant

K(H/h) = %. If G < 0, (7.9) and condition (iii) (a)

require r, = 2 and (7.25) gives

Yy +iy, = ean[t[—(—c,’,)%'xj (7.26)

If G > 0, (7.9) and condition (iii) (b) require rj =1

and (7.25) gives
Y Fiy: = exg (-¢ C_Ci.x) (7.27)

(7.26) and (7.27) are the forms of solution introduced at

high level by Wilkes (1949) for this type of atmospheric

Py

9




'top'. In general (7.24) with x = Xy provides the upper
boundary condition in a form that may be applied to & numerical
integration scheme (Lindzen, 1968).

It is now possible to express the upward energy flux at X 2%

in terms of the WEBJ solution for Ye #hen (7.11) hclds, (7.7) gives

Tox,x) =0 (x> %) (7.28)
and hence from (b.cl) with § = X1 g' = x

P (x,2) =0 (x > X (729)
Therefore by (o.20)

Poo(x,x) = Yo (x > x0)  (7.30)

L]

and the upward energy flux (in units or fF) may be written

by (6.24) as
4 2
E_, () = = (a /R 0 (YN (x>0 (7.31)

where KX,/h < 0.
I‘0
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8. The Y® relations

o~

Arbitrary constants of integration Zol’ :“o
introduced in B % have since been retained in the analysis
and in particular in the upper boundary condition (7.16).
We now turn to their elimination by introducing another
relation such as a lower boundary condition. We take the
general form of boundary condition expressed by (5.14) and
defer its identification with the lower boundary until the
last paragraph of this section.

From (5.13), (5.14) and (7.16) on eliminatine E%IQXA),

E%Q(XA) we obtain

Y(x)j rY(*)AY(u)JSU‘)A’“ You(") \/01(") = Q
A

A

st [C':, A \/a‘“)} Stydu Cr Cra

x

A

where = U, V, W, T or P, r, = 1l or 2, and Xpy X are

(8.1) expands as

arbitrary. On putting Xg = Xp»
Yoo + | [‘/;,tx)/\‘lou)]S(u\du: Q™A X)\/l"A)
XA
+ MQ(‘A,X)S N Li u)g[\.\(
el

(&.2)

> which were

7 "‘8)+J [Y (xa)/\\/ (uqJSc« Yelu 7’0(3(18) \/Q(IB) (8.1)
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where
o N,
Mg X, x) = Y YA T, ) (3. 3)
NQ(XI‘x) = [C.;/\ Z(‘X)J/[Cr‘!/\vca(x)] (3;,;}

An alternative form of (8.2) may be obtainea oy puttings

X

A = Xg» Xg * X, in (8.1) and expanding as

\/(x) -rj [\/0(-;)/\ \Io(“)] S’(u) du = NQ(3A| 2 ) 3 \/G‘zxf\‘)
X'S XA )
+J MQQA'u)S(«\CIuj‘
s
(8.5)

(8.5) also follows from (3.2) on using the iuentity

MQ(”A,“\NQ("A x)- MQL‘XA’X)NQ (:\'A‘u'\ Y (VA \.{)(u) (S- )

As X\ is arbitrary we may put X, < X iu (Le.') ard
obtain
x
Yooy = Ng (x, )78 00) + MQw,x)j Ng(x,u)-5¢ du (5.7
Ye

The introduction of an upper boundary condition theretfore
enables Y to be related to a sinpgle YY whereas (2.11) 1o
(3.13) related Y to two different {7,

As the left-hand side of {(».%) is inderendeut c¢f X ouro

3, both of which may ve assisned arditrari.r, the ripgnt-band

]
¢
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3side may te written in two ways to give

NQ(I)I) [\/OKX)_',J"MQ'@'“)S(-“) c{uJ = NQ,(IA'x) [VQL’(A)

5
YA -
-+ ,{x S )(4 |
JJ:S MQ(A“) (u uj
By means of the identity (8. 8)

NQ' (‘xA ‘);)MQ,(XA ,u) = NQ(aL,x) {MG{‘]'“)

[\/OQI(WA‘) A 700“)] NQ: (lﬂ,u)_} (%-9)

(».8) may be expressed as
a
NQL"r")g YQ('x\ﬂ-J’A MQ()(' u)S(u)du

. :
+ [ Y%y a Y30 [ N 0r,) Sty = Norrn ) Y i)
“a (5.10)
From (8.8) or (8.10), Yd(x) may be evaluated for a givern
source function S(u) provided YQ'(XA) is known for some
particuler Q' = U, V, W, T or i. We choose &' = w and
introduce as a lower boundary condition at x = X, & Known

vertical velocity of the atmosphere expressed non-dimensionally

by w(xA).

- e -
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9. Formulae for the vertical dependence of oscillations

As a consequence of the linearization employed in

classical tida. theory the results of 8 8 show that oscillations

of an atmospheric variable are independently related to the
potential field, JLl, the diabatic heating, J, and the vertical
motion, W(xA), at the lower boundary. For a rigid, horizontal
lower boundary W(xA) = 0, but more generally Earth surface
tides contribute to w(xA) and the constraint imposed on air
motions by an undulating terrain introduces new modes that

have non-zero values for w(xA). We therefore express

@ =U, V, W, T and P as the sum of the three above-mentioned

contributions by

Q= Q, +Q; ~Qy (9-1)
By (3.3), (5.6) and (8.8) with Q' = W we obtain
U 00 = i Ly, Wixay (9.2)

Uﬂ(l) = Lu(ﬁlA,Y> [ﬂ(iA)‘LJ SMwn(xA)u)ﬂ(u)JuJ
A

+ iJ"SMm (x ) JLte) du (9-3)
'KS x
U 6y = =i Lyt ) Mys o T
o + LJESMUJ(X,\,MJM du (9-4)
\/w=-auw ‘ﬁ"‘un \/J=—LUJ. (9-s)

F.
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W00 = Lw ax) WExa) (9-0)

»n

. 4 S
\/\ﬁz[x)z ~¢ L_w(xA,x) [ﬁ(ﬁrA)— LJ MWJI (:lA)u)ﬂ(u) c!u:[

+ L[.Qm—iJISI"IMLx,u)ﬂmAu] (9.7

s
WJ (x) = ‘LW(XA,X)J MWJ’(]Avu)'J—(u) du

x

A X
¥ j My (6w T du (4.5
x
[_-l+t'.a7_(x)J 'R(’(): =< LT(wA,u)\A/(yA) (99)
: LS T
[\ + ¢ qT(x)] '5(3() = - LT(wA‘x)[ﬁ('IA)—LJ Mwn(”m“\ﬂ‘“’d‘ﬂ
X
A

x [}
NSl = M A @ o)
e 4

- ]5
[:I + éq.r(z)_] _’;LX\ =t LT(-x ‘X\J ij‘(“ ,u) T du
X
A
+ kT - [TM e T de] (30)

%
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[euH(z)/aq]F;/(x):—i LP(]A‘X)\'\/'\XA) (9.12)

e Hxy/a | P )=~ LP (X4, %) ﬂuA)
J

~CJ‘5Mwn(xA,v)](u\a(u] - R
LIA

— LJX\SMP_}] (J,u)JQ(u\, du (ﬁ'.:S)
x

[ex H(l)/ao]EP) = ¢ LP(JA,x)j jMWJ. (g, %) J () du

.’~A ) '
- L.[ SMPJ("(,U)\T[“)C{M (G- 14.) »

X

Ve !
5
MQQI (u\u\) = MQ(lyuj ‘SQ/ {u\) \q.ls> R
N
LQ (:x" x): Nw(l:x)//\/a()c‘)() "4
= hd d * W,
(C,.GA 7 (%\]/[C‘.OA Y i )J (9.16)
for @ = U, V, W, Tor Pand 4' = J or e An alternative

set of relations to (9.2) to (9.14) may be derived rrom

(8.10) in a similar manner.

o
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10. Oscillations at the lower boundary: surface oscillation
weighting function wp

Expressions iur oscillations at the lower boundary may

be obtained from (9.2) to (9.14) on putting x = X,.

Alternatively, such expressions may be obtained from (3,10)
with x = X, The latter procedure is followed as the
resulting =2quations simplify more readily: use is made of the

relations

\/:’(x\/\‘/oucx) = K [Y:(x) A \/:(_‘x )] = Y.eoA ‘/:(x)

= - ¢ Hiw, )k (10.1) '

which follow from (3%.10), (5.3) and (5.11); and of %
| —+ L__.P(‘x_)() = é" Hx) Ny, (=, %)/ A (10.2)

o) = Lo, x) = - &k He Ny 1,2/ £ (10.3) :

which follow from (5.12). From (8.10) we obtain by (3.3)

and (9.16) l
D) = £Ly 0, %) W) (10.4,) i
o) = Ly G MU () 48 [eXAH(’A)‘*"o(’M/RJ |
x
xj SNJl(xA’u)ﬂl'N) du (10.5)
A
X, :
lJJ () = ¢ [eiA H(’M’%(“A\/’Q‘JJ 'SNI@:A‘u) J(vy du (10.¢.) I
XA :
Ww(xA) = Wi(xp) (0. 7) 1
Wp (xa) = W(x,) = O (0-8) "




T(x

- 4] -

TG = =t L (o0 2 )W)/ L1+t a ()]

L) = -k [ }—l(xA\/K-l{Nw(’(A.’(A)ﬂ("A}

tx Xs
+ Le? Awo("n\g Nﬁt"mu\ﬂ(u)dui

b

=1 *‘.'“T("A)J

T3() = CK%J"(JA)“ [::A wo(r,;)H(’A\/ﬁ]
)‘JIJNJ_('xA‘u]J_(V)du}‘?[\*iqr(’%\]
A

Tl = [a.o A Hu,\\J L pCin, %) Wea)

T, () = (ao/ﬁ)[ 57 WK"A’XA ﬂuA)

Tj(uA) =

where

+Lwch)J N, @y,

[a W, (%, )i ﬁ]j NG, ) Jo du

XA

NQ % ») = N, (3, %) 4,00

Q(u\ o(u]

(Q=V,2)

o.9)

(10, 10)

(10. ll)

(1o-12)

(0.3

(100 14.)

UD. |T)
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Equations (10.6), (10.11) and (l0.14) show that NJ(xA,u)
may be interpreted as a function of u that weights J(u) in
the interval (u, u+du) according to its differential
contribution for this interval to oscillations in horizontal
velocity, temperature or pressure at the lower boundary.

By (1.1) it follows that

Wr(z) = NJ(’A,MZ))/ H{z) (10:16)

weights J(x(z)) in the interval (z, z+dz) according to its
differential contribution for this height interval to the
lower boundary oscillations.

wp(z) has been evaluated for the migrating (s = 1) modes
of solar diurnal frequency designated by n = +1, +2, « . +6,
the corresponding values of h being taken from Chapman &
Lindzen (1970). The atmosphere is assumed to be
non-dissipative having ay = ¥ = O and hence by (3.18) and
(6.3)

G = (ks+cHUdz)H/%.~ ﬁ (to.7)

W 1is taken to be 2/7 corresponding to Y = ?7/5. The
adopted profile of scale height H is shown in Fig. 1. For
negative n it is found that G is real and negative, and

hence from (6.8) that K,» K, are imaginary. From (6.16)




—4.5 -

150 —

km

m_

z

50

0 1 1 l J

-] 10 5 20 25

H km

Fig. 1 Profile of scale height H.
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Fig. 2 The negative real part -w? of wp (Equ. 10.16)
plotted on an arbitrary scale for solar diurnai
modes with 8 = 1, n = =1, . . . =-6. w; = 0,

(s,n) is shown on each graph.
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Fig. 3 Real and imaginary parts of WP plotted on an

arbitrary scale for solar diurnal modes with

5

s=1l,n=1, « « « 6. Key: wg- ..... W

(s,n) is shown on each grarh.
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er ar2 then real if Yoj(x) are taken to be real when solving
(5.1); and hence wp(z) is real by (8.4) and (10.16). If the
heating maximizes at the same time at all heights, i.e. if
arg J(x) is constant, it follows from (10.6), (10.11) and
(10,14) that the phases of the lower boundary oscillations
are in quadrature with it, i.e. they maximize earlier or
later by © h. Fig. 2 shows wp(z) on an arbitrary scale
for the first six negative migrating diurnal modes (s = 1,
ns=-=1, .., =6). Such modes are referred to as trapped
modes as the generation of an oscillation by a region of
heating decays in either vertical direction away from the re;ion.
The greatest contribution to an oscillation at the surface
therefore arises from atmospheric heating ciosest to the
surface, and there is an exponential-like reduction in the
contribution to the surface oscillation with the heignt of
the heating.

For positive (n > 0) diurnal modes WP(Z) is complex
and an oscillation at the surface can be resolved into
components that are respectively in phase and in quadrature
with the heating. The vertical structure of wp is
oscillatory dividing the atmosphere into positively and
negatively weighted regions (Fig. 3). From tne #raph of

wp for n = 1 it is seen that tropospheric heatinis would

*4




(2,5)

]
o
]

Fig. 4 HReal and imaginary parts of WP plotted on an

arbitrary scale for solar semi-diurnal modes

With S = 2‘ n = 2‘ . . . 7. Key: wlp{;
----- wg. (s,n) is shown on each graph. The

imaginary part of (2,2) is negligibly small

compared with the real part.

1

2




be weighted with the same sipn at all heights, wnereas

ozone heatiung which extends itrom about 20 to 4C km is wei,’.ted
by two positive and two negative regions thereby reducing its
effectiveness as a generator of surface oscillations. For
larger values of n, vertical wavelengths snorten and the
effectiveness of tropospheric heating also tecomes reduced

by cancellations between positive and negative regions.

Fig. 4 shows wp for the first six migrating (s = @)
semi-diurnal modes. For the leading mode (n = 2) wp has the
same sign at all heights and hence tropospheric reating and
stratospheric heating combine in geunerating surface
oscillations: although Wp decreases with height, ozone heating
may be shown to be the main contributor to surface oscillations
by adopting a typical profile of tropospheric and stratospheric
heating (Groves, 1975). For increasing n, values of h
decrease and wp become increasingly oscillatory. For n = 7,
wp is almost identical with that for n = 1 in Fig. 3 as

both modes have nearly the same value of h (i.e. 0,700 and

0.691 km).




- 48 -

11, ouscillations above a8 region ot excitation: thernal

response weighting function wt

Above a region of excitation, expressions for the
oscillations of atmospheric variables simplity. with

X > Xg» (6.%) and (8.8) reduce to

Y{(x) = Nw (x,, x) ?(’YA) (it
Y4 = LoOyx) $0w)  (@=U V. W T 7))

where by (%.%), (5.6) and (9.1%)

..x | -
$0p) = W) - L IL(R) __j JEMWJ)L"A,“U?‘“)*MW.J.(*A.ﬂj(v_)Jdv (1.3)
A
Tnen, by (3.6) and (11.2),

Yooy = IV = Ly ep,x) 0w (-4 )
wWix) = Lw(uA\x) é("A) (1.5)
[l +£aT(1)] Ty = -¢ L-,- (>xa, ) é(."A\ u.6)
(€™ HEYog P = —iLp Cp, ) £00) (1-7)

We define
W, (z) = ij(w,,_um\/ Hez) (11.8)

then it follows from (11.3) that wt(z) weights ¢(x(2z)) in the
interval (z, z+dz) according to its differential contribution

for this height interval to '¥(XA) and hence by (1l.4) to

¥

B i bt
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(11.7) to the oscillations at any riven x > X.. rlots of

N
Nt on a8 relative scale are shown in Figs. % and o for positive
and nep;ative solar diurnal modes with the same atmospheric
data as in 8 10. wt is real ror a non-dissipative atmosphere.

For positive (n > O) diurnal modes, W, is oscillatory
dividing the atmosphere into height intervals which
make alternate positive and negative contributions to
the oscillations at a given height above the region of
excitation. The greatest weiphts are given to excitations
at the lowest heights on account of the exporential-like
growth of amplitudes on propagation into air of decrearcing
density. Excitation by the region of ozone neating is
much reduced by the cancellation of positive and negative
contributions, the reduction being greater for higher values
of n.

For negative n (Fig. o), modes are characteristically
trapped ard above a region of excitation thne sreatest relative
contribution to oscillations at a given height arises from
the uppermost levels of the excitation: hence L increases
with height. For n = -1 the trapping character is weak
and the effect of a region of heating extends over a
consideratle range of heights.

Fig. 7 shows W _ for the first six migrating (s = 2)
semi-diurnal modes. For n = (', W_ changes sisn at 1% km

t
and therefore tropospheric heating and stratospheric heating
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generate opposing contributions to oscillations above »C km.
For increasing n, wt become increasingly oscillatory and the
extent to which the contributions from troposrheric and
stratospheric heating to oscillations abtove 20 «m coubine

or oppose one another is dependent on the structure of thre
heating profile. For n = 7, wt is almost the same as that

for n = 1 in Fig. 5.

The upward energy flux (in units of fﬁ) at x > X

has been expressed by (7.31). By (11.1) this becones #

,(’*),Nw("‘,x,x”z[é(fx,,\]l (x>x Yy (1.9)

E,, () = ~(aR) K"

where KI;./h < 0. i
(o]

12, 0Notes on computational procedure

Let (O,xE) be the range of x for which computations are

undertaken, then in order to evaluate Cr X5 needs to exceed
0
Xp e Initially X7 is not known but values of x

B corresponding
to 150 km have been found to be adequate. Two independent i
solutions Y ., Y 5 of (5.1) then need to be obtained by

stepwise integration. With equal step-lengths an undesirable

loss of numerical accuracy results if solutions are exronential

in form. The difficulty is readily overcome by a change of

variable from Yoj to 1n Yoj’ but a criterion is needed Yy

which to determine in advance of the integration process
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whether or not such a form of solution is to be expected.
A criterion which has been found suitable for treating the

solution as exponential-like is that

Im5 > Ik (12.1)

for all values of x in (0,x,), where ri is defined by (©.9).

Case (i): |f11| < |fIR| for at least one value of x in (O,xg)
Yoj is obtained by stepwise integration of (5.1) in the

form of two first-order equations

d¥e; _ (02.2) )
dxl WU

éjd = -K X“. + 2y YU (12.3)

dx

where Yli is an auxiliary variable. The integration is

1%}

started with initial conditions

Ym(o) = (C} )_i 4_\_/0‘(0) = 0
dx (l'l.q.\

\/O:)('O) =0 C_‘;_:/g’z(o) = (Cf)f'r \
dx .

where G is arbitrarily taken to be the average value of G in

(O,xE). From (5.3) and (12.4)

W, (0) =, L\?.S)

case (11): [[T| > [I1F| for all x in (0,xy)

We write




Xoj = fn 7’03 + K (12.¢)

where K is a constant which it will be shown can ve chosern

such that (12.5) holds. An auxiliary variable X

13 is
introduced by
.= [ d- (12.7)
\)('J dXOJ/d‘x
then (5.1) reduces to a Riccati's equation
2
dXyj - _R +2¢ X - X5 (12.8)
t
dx
Initial conditions for Yol’ Y02 are taken to be
Yo, (0)=272¢CGY)* 9:;.\’_0-‘05 =-23g) 2.9)
x

-4 — =7 d¥y.. -4 = \:
Y,.(0)= 27 2(-§)* A Yo (0) _ 273 (-B)& (12.10)
d
where G is arbitrarily taken to be the averape of s in (U,xE).

(12.9) and (12.10) are appropriate to solutions that initially

decrease and increase respectively with exponential forx

irom
the same initial value and satisfy (12.5). by (12.0),
(12.7) the corresponding conditions for Xoj are
= dX., Q) _ G
%o, (0) = O o= - (g) (12-1)
X, (0)= O d X, (0) _ -G 3 (12412)
> (0) < )

on choosing

K = 4 4n [2(_é)2] L2 13)
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The computational procedure would then be to integrate (12.8)
followed by integration of (12.7) for each of the initial
conditions (12.11), (12.12) and then Yol’ Yo2 would follow
from (12.6) using (12.13).
When (12.8) was integrated with initial conditions (12.11),
(12.12) for the case of G real and negative, corresponding
to a non-dissipative atmosphere and solar diurnal modes with
negative n, it was found that the solution with (12.11) after
initially decreasing changed to one that increased with x.
The reason for this behaviour may be seen by writing (12.8) 1

as

4 &yv) = ¢a)- (xy- +) (1216

by (3.17) and (6.3). For a non-dissipative atmosphere,

7« = 0, and with initial condition (12.12), variations in G
from G result in a solution Xy5(x) =2 [.-G(x)]y2 and

Xmg/dx = O, With initial condition (12.11) however the
same variations in G from G result in a solution

Xll(x) +* —[}G(x)]% as there is no corresponding change of
sign in dX,,/dx calculated from (12.14). For sufficiently
large x, it was found that xol’ Xll were approximately
proportional to Xo2, X12 respectively. In principle the
solutions obtained for Yol’ Y02 are valid, independent solutions;
but a serious difficulty arises because as x increases they
become dependent soclutions to the accuracy of computation,

and in subsequent calculations all significant figures are

_“,____._._......--nl---m----lﬂii".
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lost through the differencing of very large and nearly equal
numbers.,

The following procedure has enabled exponentially
decreasing solutions to be obtained without loss of accuracy.
The solution with initial conditions (12.12) is first
obtained as described. Then (12.83) is integrated backwards

from x = Xg to x = O with the initial condition

p3Y (Xg) = - )(|2 () ((Q.IS_)
to obtain Xll(x); and Xol(x) is obtained from (12.7) by
likewise integrating backwards from x = xp to x = 0 with

the initial condition

xmb‘E)_‘_ Y‘oz (e Q?JL)

By (12.6), (12.7) we obtain from (5.%)

w (%) = {eu(n [Xo‘(xd-o-xcg(lf) - 21(]} [Xu CRED W (15)] (12.147)

Hence by (5.4), (12.15) and (12.16)

va(0) = 2un (e emp [-2K-2 [ 'y o] (205 )

In order that (12.5) should hold, we choose

“E
K = élm [l)(,z(‘xf)j “—J,, ¥ duw (12.19)

By (12.6) the required solutions are
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-

\/OJ- (%) = { exp [XOJ-D\) +f‘E\f« Au]ﬁ/[z X (‘xE)Jé (12.20)

Computing accuracy may be checked in the usual way by
changing the step-length or by evaluating the Wronskian by
(5.3) and comparing the value with that of exp[2J1Y duJ
(Bque 5.4 and 12.5). Integration step-lengths A;ve been
chosen according to the scheme in Table 1. with £ = 3 ko ,

an accuracy of 1 in lO6 has been maintained in the computations

undertaken.

Table 1. ¢Choice of step=-length according to h, where £ is

ctep-length selected for 0,5 < T ¢ 1,25 Gm)™?

h<0: (-h)™2 Gm)™ 0 =1, | =2, >2
step-length wll 7ol ®L
h> 0: W™ (ki)™ 0=045, 0u5-1.25, 1.05=0u4, 2.5-5, >5
step~length 1% 4 p 5y wl Y4

At the upper end of the interval (O,xE), the solutions

Yol’ Y02 are required to approximate to the WKBJ form of

s



(6,12) in order to determine C.y from (6.16). We define
o)

dY,, o0
LKL e Y
Z“‘.(X) -

AL 0y,

dx

@< xgx) (12.21)

where Yoj’ dYOJ/dx are obtained by numerical integration as
described above and may not necessarily be WKBJ solutiorns.
In (12.21), r = ros Ty being 1 or 2 according to the type
of upper boundary condition, i.e. whether Ki (xE) < 0O or
Ki (xE)/h > 0. It the values of 2 l(x) agproximate to a
cogstant value for a range of values gf x at the upper end
of the interval (O,xE), then this constant value has been
taken to be the quantity defined by (6.16) in which Yoj’
dYoj/dx are WKBJ solutions.

Calculations have been undertaken for a non-dissipative
atmosphere, i.e. one for which ap = ¥ = O and (10.17) holds.
Fi¢e 8 shows Yol’ Yo2 at heigshts from O to 150 km for various
values of h for which the Case (i) integration procedure
applies. As h increases from 1 to 25 km, Yol’ Yo& change

from an oscillatory tc a mainly exponential form.

In choosing T, we need to consider the following relations

which derive from (6.9) and (7.9) on noting that for a

non-dissipative atmosphere G, Gx are real

R R .3
= - K - 2
K| 2 <q> O) (II.Z?)
K i~ KI =@Q./4&

L R
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equation (5.1). Values of h are shown on each

set of curves. Case (i) integration procedure
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parts of % (Eque 12.21) which aetermines C
rol r

1
o]
on approximating to a constuant vilue with
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}<|R = Ki - O
K, = (-Cz)"%q;/gg“ (G<0) (12.23)

Ki = -Ca)*+ G /kG
where by (10.17)

> H dH H JzH 1 .
G = — K+ @y dF + H &L 12,24
)1 f\_ [( ci'l) dz ({ZIJ (‘2 )

For all cases in Fig. 8 G(xE)T> O, where X, corresponds to
150 km altitude, and hence by (12.22) with x = x; the choice

r, = 1 complies with the upper boundary condition (iii) (b)

. R R .
of B 7, i.e. Kro(xE)/h > 0, Kré(xE)/h < 0. Also it may be

noted that condition (1ii) (a) of B 7 does not hold as Kih’é) v

by (12.22).
Values of Z . ; calculated from (12.21) with r, = 1 are
o
plotted in Fig. & and above 100 km approximate to constant

values which determine Cr 1 with an accuracy of the order

. o}
of 10--5 in comparison with Cr o> = 1. The values obtained \’
o 4
for Cr 1 depend on the arbitrarily chosen solutions Yol’ YoD
o 2

and have no direct physical significance. Cr y enters the
o

analysis through (7.16) which is valid for any independent

solutions Yol’ Y02 and the corresponding value of crol' |

Fig. 9 shows Yol’ Y02 for various values of h for which :

the Case (ii) integration procedure applies whereby one
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exponentially increasing solution and one exponentially

decreasing solution are obtained. For h = 50 km,

G(xE) > 0 and r = 1 as for the cases in Fig. 8, For
other values of h in Fig. 9 G(xE)<< -[Gx(xE)/4G(xE)]2<f C,
and hence by (12.23%) K{K§~< O and the appropriate choice
of r, is r = 2 under condition (iii) (a) of B 7, i.e.

I
1Z> 0. i
For all cases in Fig. 9, 47 ., = 0 and ZR decreases
rol rol
at sufficiently great heights to very small values indicating

Kg < 0 and K

- ~ . C s .
that Cral O. Vrol is hcwever multiplied by Y02 in the

product Cr 1 N Yo and as Yoq increases indefinitely it does

pa.

o]

not necessarily follow that the product is negligibly small.

The orders of magnitude of Zi 1 at 150 km are shown in Fig, 9
o]

and when multiplied by Y02 the product is seen to be
negligibly small compared with unity. The same result may

be established analytically using the relation

o e

\/o‘ iyuz_ Y (i:/oa _ ‘ (lQlS)
dx d x

which follows from (5.3%), (5.4) and (12.5). Then by
(6.16) and (12.25)

-]

ConY, = [(Ko Wop - oVeo/ dx] (12.40)

If r, = 1, as for the case h = 50 km, G(x) > O for values




of x close to x, and by (12.2¢, and (1l2.26)

Cont| = [C A (Sg‘“*r G VQJJ (12.27)

b X Lq

Wl-

Hence if Y ,, dYog/dx are larse compared with unity the
right-hand side of (12.27) is correspondingly small compared
with unity as G > O, Ir T, = 2 as for the other values of
h in Fig. 9, G(x) < O for values of x close to Xy, and by

(12.23) and (l2.20)

dY. [

a"'?‘ LI'LZS)

1CAY% | = IK Yy +

Hence for large Y -, dYoE/dx (which are positive for tne
exponentially increasing solution) the right-hand side of
(12.28) 1is correspondingly smail compared with unity as

I
K] > 0.

13, Surfuce pressure oscillation due to a tidal poterntial

‘The variation of the surface pressure oscillation En(u)
with the equivalent depth h has Leen extensively investisated
for different profiles of scale height H in connection with
the theory of atmospheric resonarnce., we follow earlier
procedure (Wilkes, 194Y; Jacchia « sopal, 1952; Siebert,

1901; putler & Small, 193%; Giwa, lYo8) and tarxe the ratio
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{)(rc:ﬂ) = (.’ﬁ'l/Pe_ )xA-O Ug')

where gn. is given by (10.13%) and Pe is the dimensionless
hei;ht-dependent function ror the equilibrium tide.

For the solar semi-diurnal oscillation it is now
recognized tnat the erftect otf tnermal excitations dominates
the gravitational tide, but tor the lunar semi-diurnal
oscillation this is clearly not the case and the evaiuation
of v for the approoriate value of h (= /.U7 km) has nreen
of continuing interest. sy direct numerical integrations
of the classical tidal eguation, results for " with
h = 7.0/ xm have been shown tc ve extremneiy sensitive to the
choice oi basic atmospheric properties, nacely the profiles
of scale heipht and newtonian cooling (Chapran & Lindzen,
1970). In descriptive terms, the sensitivities arise Ifrom

trie setting up of a dependence on multiple reflexions between

norizontal surfaces at different heights which are critically
dependent on basic atmospheric properties. when the zonal
winds and latitudinal temperature gradients ot a realistic
atmosphere are introduced the reflecting surfaces are no longer L
horizontal and by integrati-in of the non-classical equations
multiple reflexions and resultine sensitivities are found

to ve laryely removed (Lindzen & Hong, 19/4). we shall

nevertheless develop the anaiysis for 7 bty classical theory
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in view of tne earlier attention tunat it receivea, *ut oo
some range of values of h includirg h = 7.07 xa it is
recognized that the results are not realigtic.

By definition the static equilibrium tide has zero
horizontal components of velocity, and hence from (%.3) and

AN
1
(3.12) YU = Yl = YP = Q. From (3.%2) we then obtain

Po= -l ao [ H (13.2)

By (10.1%) with x, -« and (1%.2) with x = U, we may write
(1%2.1) by (10.19) an: (12.3) as

x

S

nin 8 = [Nw(o,o) +Lj Ny 10w )gytn DR 130)

where the very small dependence of JL(x) on x nis neen
neglected. BY (B.4), we wav 'nen write (13.2) as

i K) = Sﬁﬁ;é? H(0) (13.4.)

Cro/\ 7':1(0) f\
where
Yoo: = Y (0) 'LJ“S\/ (W) 6 (w) du (3.5)
OOJ - OJ' + OJ, 2

o

An infinite response therefore arises tor values of h

which satisfy

C‘; A ‘/Ow(o) =0 (13.6)




Uscillations tor which (1%.o) holds are vreferred to as :Tree

oscillations.

Wwe proceed on tne assui.otlion tnat the atwosphere is

non-dissipative, i.e. that & = ¥ = O and tnat (10,17),
(lee22) to (ld.c4) rola. Sen Ly (Deoy S, = U, ooy (13.5)
Y

00j ™ YOJ(O) and (l%.4) may pe written by (3.lu, and (5.11)

as

U, ) = ,ﬁ_&g_mﬂwwil_k_- (13.7)
Con |29 1)) ]

dx
Ahen Case (1) integration procedure applies, we obtain

on introducing (12.4) into (13.7)

o, 80 = 1= (24 G, GR) 4/ H) 13.5)

¥hen Case (i1) intesration procedure applies such that
Yol(x) nas an exponentially decreasing form and Yog(X) £as
an exponentially increasing torm, we have that Cr I O.
Hence (13.7) gives by (12.6) and (12.7) °

(70 )] = 1 = [ - X (0)] B[ HW) (13.9)

In the special case when X; = O, i.e. when wKBbdJ
solutions hold for all x, u(x) which is real by (10.17)

has the same sign at all hei-hts otherwise (b.4) would be
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invalidated. Under Case (i) integration procedure we have
that G(x) > 0O, and from (12.J2) it follows that the choice

r, = 1 complies with the upper boundary condition (iii) (b)

ot B 7, i.e. KX (x)/h> 0, kX, (x)/n< 0 (as n> 0 oy (10.17}
o 0
in which K + dH/dz > O for a realistic atmosphere). (6.16)

now holds for x = O and by (12.4) gives

C, = —<K,0©)/ C:L1 (13.10)
Hence (1%.8) becomes
O, 0] = 1 = [§ - Ko ] 4/ HO)
- Gx(0) | . 1
= 1= {5+ 200+ QO A[HO) )

by (12.22). Under Case (ii) integration procedure we nave
G < 0 and by (12.2%) it follows that the choice r, =2
complies with the upper boundary condition (iii) (a) of

8 7, i.e. I (x)<f 0, (x) - 48 Cyy = 0, it follows

ifrom (6.16) that A2l(x) = O and from (6.12) that

Vo‘(l) = A“ lg) e‘x['). ["S XK‘(_\A) c(uJ (13.12)
13
Hence

X, (o) = (K, 0) (1213)

and (1%.9) becomes

JRTSSRY S,

ARNer it
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[ %)

| - [3-iK (9] &/H(©)

-—

- 52 i’l(}(.lOO) + [ g(ofl }ﬁ/HlD} (304 )

by (12.23).

]

For an atmosphere ol counstant scale height H, o_ =

X
Gy = O by (12.24), and (1%.11) and (13.14) give
-‘— L [ 8 ‘lz' el.
ot 1= st ff e d<nd
(13.15)
_ "
Pasl=1- i G-gRE (hcow fran)
(13.06)

Fig. 10 shows (1%.15) and (l%.lt) plotted on an Argand
diagram for a range of values of h/ii. The only physical
quantity that enters into the calculation of this curve is
Xﬂ the ratio ot specific heats tor air, which is taxken to
be 7/5. The semicircular part of the plot has radius K
and L is the point corresponding to the leading lunar

semi-diurnal mode with H = 7.0 km. At the origin

H_ v _ . H\3 1341
p s G- ) (1317)

by (13.16). By (3.5), equation (13%.17) gives

R=YH (13.18)
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of h/H, where scale height H is constant.
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Fig. 11 |qi against h/H, where v is shown in Fig. 10.
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Fig. 11 srows the mupnification |m| as a runction of h/h.
Tne main leature ol this curve is the free oscillation at
h/H = Y : tor K = 7.0 km the free oscitlution arises when
h = lO.04 km.

For a realistic scale lLelpht protiie (rir. 1) the
evaluation of » ULy {1%.5) cr (l1%.9, yenerally requires
integrations of tne homovreneous eguation (%.l) over a
range (0O, xﬁ) for a value X4 such that wWKoe solutions are
valid for x > X For the scale height profile of rig. 1, ’
q" is suown in rig. 12 L1or’ a range of values oI h in km.
(The curve betweer h = 7.3% und 9 km is omitted to avoid
contusion with the part ol tre curve between h = 4 and
o km which it follows closely). On comparing Figs. 10
ana 12 (or Pigs. 11 and 13), tne change from a constant to
a realistic scale height is seen to drastically efrect the
response for values of h irom about 4 to 8 xm including
that «f the leading lunar semi-diurnal mode at L (Figs.

10 and 12).

In Fig. 15 the magnification || has a very sharp peak
at h = 6.77 km with a magnitication of 16.5. “Le laryer
peak at h = 10.% km 1s similar to that for a constant scale
height (Fig. 11) but the peck magnification, althcugh very

large, is no longer infinite. Trie two peaks of rim. 13

have teatured in previously pubiished response curves




Fig. 12 Argand diagram of f)-l for a ranpge 5i vo, ..

of h. Y is taken from Fig. 1. Y < 7y
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Fig, 1% m] againgt h, where 1) is shown in Fig, 12,
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(Weekes & wilxkes, 1Y4/; cvaccnia & sopal, 1-57; Jiws, . wo;
Hollinvsworth, 14971). ulwe {(1vbz) obtairea a masizus o
h = 4.4 km with a mapnification of 1.7; and a tnird maximin
is ootained in the present calculations at n = 3.1 Ki, Uu:
it is too small to be apparent in rfig. 1% althourn it is i
shown by the tisht loop in Fig. 12, A Still smeller
maximum obtained by uiwa (liog) at h = 1.9 xm woula ujppesr
to correspond to the 1nrlexion that is apparent in the curve
in Fig. 12,

As multiple ret.exions do not arise with a constant
scale height a more realistic result for O” might be
expected to be siown by fir. 10U tnan Fig. lZ, in spite ot

tr.e scale height approximation involved. Using, the equation
5 B q

o

0i t.e locus shown in Fig. 10, Chapman & Lindzen {(197C)
pointed out that both the observed lunar semi-ciurnal
pressure amplitude of = /U pb and phase of 2:720 are

quite well represented vy tudineg H = 6.76 km. The yredicted

phase can be read off directly trom fig. 10 as the an-le petween

OL and the downward axis, where O is the c¢rigin. 1, ig plotted
in Fig. 10 for H = 7.6 km and a phase of ©3® is then ottained.

Assoclated with an externali, avpliea tida. potentis. :
JloE is an additional potential xlloﬁ arising from detcrmnation ;
of the barth and a vertical veliocity component at toe nartn's

solid surtace of -n' oE/go‘ where h' and x are Love': :umbers,
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Noc is introduced by the ocean tide and there is Hlao o

additional potential SIoC Jdue to deiormation oi tie ove.n
(Hollingsworth, 1971). 1t the individuali excitaticns ore
taken to be additive we have

JQO = (""-&)RQE -+ Roc_

) (.3."1\
wo = WOC - ‘Rlﬂcélgo
Then for a single mode by (2.21) and (2.22)
ﬁ = U*{f\ﬂg fﬁ.c_ 03'20)
wW = \JC + L%:ﬂe- (13.29)

It the surface oscillations generated by (13%2.20) and (13.21)
are denoted by Pch’ PoW’ the oscillation reccrced ty a

iand~-based barometer is
_ / ) (12.22)
‘Pa = ‘POS'L + "Zw + QL ‘ROE rw/ 9{} H{©) . ;

Trne third term on the right-hand side is tne pressure
oscillation due to the small vertical cisplacement of
the barometer -h'JloE/go. For a single mode \14.,:0, vecores

vy (2.21) and (2.22)

P o= Ty Ty v K oo/ HOY (nan)
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Hence by (10.2), (10.12) and (1U.13) witn x, = 0

b= GO————LP(O’O)W . N ; i
- Y (¢ 0) | (1+%k- 4"
CHW) d w0 [ e
s |
*ﬂc] + ij Nﬁ(O‘ V).D(u)du} 13,240

[§)

If the contributions of the oceans and atmospheric divsiratiorn

are neglected we unave
T = - (~&-R)J NW(O‘O)GC/‘R (13.:5)

(1%2.25) shows that the elasticity of the Barth has the effect
cf multiplying le and hence the resulting tidal pressure
amplitude by (l+k-h'), i.e. by about 0.70, whicn is the result

miven by Hollingsworth (1471).

14, Discussion

Atmospheric tidal theory has been aeveiopea and appliea over

many decades, but a compreheunsive analytical treatment alon.
the lines of that of Butler x Small (lwo3), which essentially

involves the torming of ureen's tunctions, has been lacking.

A aifficulty that soon arises in any such analysis is that ol
manipulating rather cumbersome equations. Close attention
nas tunerefore veen given here to the chroice of notation ard

tormulation: in particular it seemed wortrwrile introducire
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the symbol A for tne cross-product that frequently occurs.

A feature of the analysis has veen the systematic formulation
of results for different atmospheric variables, i.e. wind
components, temperature and pressure. rrcgress in this
direction was helped by tne introduction of the YQ notation
(Equ. %.%) and the derivation of (5.10). another leature

of the analysis has been tne retention ot the arbitrary

P

constanuts 2501, :;oa until they could be simultaneously
eliminated by the introduction ol two boundary conditions te
give the determinant (83.1) and thence the general relations
of 8 s, The upper boundary condition foliows earlier
accounts by adopting the radiasion condition, but its
application in terms of WKBEJ solutions is less restrictive

as the actual structure of the atmospheric 'top' does not
need to be specified. At tne lower boundary the vertical
component of velocity is retained as the usual assumption

of a zero value holds only for a surtface-air intertace

that is rigid and norizontal, Unaulatious ol t- errain
interact with the primary atmospheric osciiiccions and set

up new oscillations for which vertical velocity cowponents

at tne surface are not necessarily zero. ourtface tidal
motions are another source ot excitation at tie lower
voundary tc wnhich the presert resulits are arplicatle in terms

of vertical motion.
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Application or the derived formulae to quantitativelx
defined sources of excitation has not been undertaken witnin
tne scope of this paper. The analysis has however teern
developed for particular heights: the first case at tre lower
boundary (8 10) leads to the evaluation of surface oscillation
weighting functions wp for a4 range of solar diurnal and
semi-diurnal modes (kqu. 10.lo, Fifgse. < to «+). ’he seconcd
case is for heliyhts above the region or excitation ana leads
to tre evaluation o tne thermal response weicshting function

'

W, for the same modes (Equ. ll.%, Figs. 5 to 7). W, W

L t

have previously been presented graphically for a selection
of modes and provide a useful mears of understanding the
relationship between the vertical structure orf a thermal
excitation and its resuiting atmospheric response (aroves,
1975, 1976, 1977).

No attempt nas been made to define the limitations ol
classical theory in its application to the real :tmospaere,
vut reference is made in 8 1% to the case of excitation by
the leading lunar semi-diurnil mode of tidal vpotential for
which classical results may oe unrealistic. The treuatment
ot the surface pressure oscillation due to a tidal votential
(B 13) has been of long-standing interest and provides an
example of the application of (10.1%): the results o-tained

are gratifyingly in close agreement with previous accounts.

|
|
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List of symbols

Reterence Reference '%
2 (2.13) Por Pog (1.1) f
350 2 (6.5) pS (1.7)
p (3.6) r (6.11) L
£ (2.1%) r (7.11) }
& (1.4) S, (2.9)
o (2.13) S5y 8y (5.6) i
n (1.2) t (2.2)
' (13.19) o (5.10) '
& (1.4) W (5.3)
k (13.19) x (1.1)
AL Table 1 x, (5.4)
i& (2.2) X, (5.5)
L, 15' Il' Xg (5.14)
IP’ b FU’ Xg (12.15) ! 
XV, f, £, (2.22) v (7.2) |
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Relerence neierence
Xg (7.1) K R N I T
fo~ - \-‘\
, \ldol .
y (1.2)
A NPEED)
yl’ yd‘ (1'5) r
s L k\..f:‘l), \Z.:‘:
y 14%)
n .
Lo rate ol Jlecrease
2 (l.1) ot tewmrerature,
(%2.7)
L\i (Q:Ps‘vp, #
Ar, AI‘J (oe1C) UyVyw) (9,100
Crr Cpg (0elo) MQ (Be2)
DC" DOJ (bni) hQQ' (Q:r}*;>
) LV
D) (4.5) (' =0, (2,19 ]
B (4.1) N, (=P,2,
< U,Vyw) (8.2) 1
Er’ B (6.22) ,
N, (Q!:J,ﬂ) (10.15) i
F (3.18) <
, P (2.21)
G (6.2)
_ PO rressure
G (12.4) rerturtation v
.S . . " 4
e (1.3) Fq (14.1)
H (l.l) }\II‘ \Kﬂcl'?)
Ir (b.6) fOR’ }ow (13 70D
12 (1.5) y CL 1D
\0' o -3 )
J (2.21) <5 \ .
J diabatic reatiny Q) (oL .
° rate per unit °
mass of atmosp.ere Qc et \
s s
Jn (]_.4) "‘J’ "lwv 'l’.n
(Q:P,T,U,V’,.‘.)‘\ ‘o L)} :
S (.’Vw.'\f_’) !
I . :
R (a1l
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i
h Reference reference
) .S ,.S q -
Qos Ag (2.5) Ylj (12.2)
R (3.17) Yoor Yooy  (13.8)
S (5.5) Ya’ Yaj (bel)
T (2.21) vF oyl oYY,
V SN
T, temnperature T, (3.2
perturbation YQ (%.9)
U (2ec1) : :
Ygaygja (4=
Uy perturbation of P,T,U,V, &) (561C), .10
the eastward ¥
wind component Arj (1.7.21)
v (2.21)
v perturvation of o (lam)
© the northward
wind component P (1.
W (2.21) Y (lec !
W perturbation ot o .
° the vertical
wind component e \e ol
OC (15.19) a8 \ . A
Np (lo.lb) k \;‘.‘
Wt (1108) ,“ \—..L)
W (13.21) £ (0.1
‘ e L)
XOJ (1206) § kL‘ol ,
xlj (12.7) fo (4.20)
Y (%3.2), (5.2) ey (lav)y
Y (5.2) # (2.
Y , Y . (5.1)
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o

\n.oc , ‘ﬂoE
ﬂc) J’IE

- 51 =
netference
(3.10) For Fpr Py
(2.13) Far 7y

Fq
(0e8)
(2.21) superscripts
(2.15), (2.21) R
(2.16), (2.21) I
(2.11) .
(5.2)
(11.1) Subscripts
(2.21) J

potential of
applied force
per unit mass

of atmosphere r
(13.19)
(13.20) X
(%3.14)
Symbol
N

reference

IYeal tart
imasinery pars

complex ven, ucate

= 1, 2 refers o

the two independ-
ent solutions

of (%.1)

= 1, 2 refers to

thke two sKbd exp-
cnential lorms

derivative with.
respect to x

anb = a,b.-a.b
1 - Pt

1
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